Posted on Leave a comment

This Fujifilm Firmware Update Will Make Your X-T3 Feel Like a Brand New Camera

This Fujifilm Firmware Update Will Make Your X-T3 Feel Like a Brand New Camera

Fujifilm X-T3 owners are in for a treat today as the Japanese manufacturer has just announced a firmware update which promises significant upgrades for the camera’s autofocus, potentially making it feel like a brand new camera.

In short, upgrading your X-T3 from Ver3.30 to Ver4.00 means that your camera’s autofocus performance will match that of the new X-T4. The new software can be downloaded here.

Fujifilm states that at its fastest, autofocus speed has been boosted from 0.06 seconds to 0.02 seconds, and there have been significant improvements to the algorithms that predict subject movements.

In addition, autofocus tracking performance “has been doubled,” which we assume means that the camera will grab a subject more quickly. Eye autofocus in continuous modes has also seen a boost.

Low light level performance has been improved with Fujifilm claiming that autofocus now functions as low as -7EV when the camera is paired with the new XF50mm f/1.0 WR lens.

Users now have the option of limiting the focus range which tends to be useful when shooting nature, sports and macro.

Early adopters are already reporting the new firmware as a “massive upgrade.” Fujifilm has also released a minor update to fix a bug in the X-H1 which can be downloaded here.

Be sure to let us know your experience of the new firmware in the comments below.

Source link

Posted on Leave a comment

dudler’s latest blog : the patent etui

dudler's latest blog : mirrorless - and why they?re (arguably) better

The Patent Etui

28 Oct 2020 10:05AM  
Views : 55
Unique : 45


I think I paid £6 for this lovely little camera, while I was still at school. I haven’t used it very much, for lack of a way to feed it photosensitive materials.

The thing is that it came with six single-sided plateholders. Not cut film: plate. Very early in my ownership, I managed to get some HP3 plates, but you can’t get them any more… It’ll take a Rollex back, and I have a memory of exposing a slide film with the aid of a back borrowed from the school Biology Lab.


It’s a fascinating camera. It folds to make a pretty slender package, with its ground-glass screen attached, though six plateholders treble the volume and weight… It’s also very sophisticated in terms of the facilities it offers. It’s got a fixed lens and – by modern standards – a limited range of shutter speeds, but there’s a wire-frame viewfinder and a brilliant finder as well as the groundglass screen. There’s a rising front and a double extension, so you can shoot lifesize pictures (which is a subject that will feature in a future blog).

The Etui isn’t ultimately solid in build quality, but it’s all rather clever, and while it doesn’t match the minisaturisation fo the Compass camera, it was easy for a camera firm to make, unlike the Compass. It’s a practical camera by the standards of its day, and it gave very decent results. Here’s a tour of some of the fun features.

Sports finder – a wire frame folds out from the front plate, and there’s a metal bobble that folds out from the back to allow you to centre your eye precisely in the centre.


Rising front, controlled by a screw on the right of the front plate. The ground glass screen always gives an accurate view, and so does the wire frame finder. The ‘brilliant’ finder (which turns 90ᵒ for horizontal and vertical frames) isn’t accurate in such circumstances.


Focus scale – it’s not especially detailed, but it’s sufficient for general outdoor use, and has a very firm detent at infinity. You have to press the small tab at the front of the rail on the left of the baseplate to move away from infinity, and the focus wheel snicks flush with the baseplate for folding.

The lens is a 105mm f/4.5 Tessar, and it’s uncoated, and the Compur shutter uses the old-fashioned speed sequence – 1, 1/2 , ¼, 1/10, 1/25, 1/50, 1/100, 1/200 and has to be cocked with a lever that sits around ten thirty as you view the camera from the front. The shutter release is at seven thirty. Hanging off the side of the brilliant finder is a bubble level. There are two tripod bushes, on on the baseplate and on the right hand side plate.


I can’t locate any of the plates I exposed at the moment – they’ll surface some time… They’re a size that was known as Quarter Plate (3¼” by 4¼”) – half the size of Half Plate, and a quarter of the size of Full Plate. Unlike the A-series sizes we’re getting used to now, the ratio of long to short sides isn’t absolutely constant.

The Etui isn’t a camera you’d choose for everyday use – but it is one to admire for how much it packs into a remarkably small and light package.


Source link

Posted on Leave a comment

Top Creative Drone Photography Tips

Top Creative Drone Photography Tips

Make your aerial photography stand out from the crowd with the help of these top tips from the awesome COOPH team.



From inception-like landscape images to unique selfies, in this video, the COOPH photographers share their creative drone photography tips and tricks.

In the tutorial, the COOPH team focus on 3 fun ideas which they walk you through step-by-step from start to finishing, covering everything from the gear you need to where you need to capture your footage and how to edit it. 


Drone Photography


The team kick off their tutorial outdoors for a two-picture capture which, with a bit of patience in a photo editing app, creates an optical illusion you feel like you can step into. After combining two photos, why not go for three? For this method, you need to capture a photo low and close then go a little higher for your second capture and finish with a snap from further away. Connect the 3 images in post to create a cliff-like image that has various height differences. 


Drone Photography


The final drone photography idea combines, you guessed it, 4 images which you need to capture in a circle and each image needs to get slightly lower (or higher) than the previous one. When you open them up to edit, place them all on one document and adjust the photos so they connect/flow from one to another. In their example, the COOPH team use a road so simply connect the long line. They also use the Warp tool to fine-tune the image and give it its mind-bending curve. 


Drone Photography


If you own a drone and have a go at the above techniques, we’d love to see your photos uploaded to the ePHOTOzine Gallery!

Support this site by making a Donation, purchasing Plus Membership, or shopping with one of our affiliates:
Amazon UK,
Amazon US,
Amazon CA,
ebay UK,

It doesn’t cost you anything extra when you use these links, but it does support the site, helping keep ePHOTOzine free to use, thank you.

Source link

Posted on Leave a comment

Autofocus Modes Explained

Most modern digital cameras are equipped with advanced autofocus systems that are often hard to understand. Whether you are shooting with an entry-level or professional camera, knowing how to use the autofocus system effectively is essential to get sharp images. A badly-focused, blurry image can ruin a photograph and you cannot repair it in post-processing.

If you learn how to focus correctly, you will end up with sharp, perfectly usable images each time, which will make yourself, your family, and your clients happy. Simply put, accurate focus translates to sharper images and that is something everyone is looking for in photographs today. I know some photographers will argue with me on this, saying that sometimes image blur yields a “creative” look, but it is one thing when you do it on purpose and another when you consistently mess up just because you don’t know how to focus well with your camera. Once you learn how to properly focus with your camera, you can then decide whether you want to blur something on purpose.

Great Blue Heron in Flight
Great Blue Heron in Flight
NIKON D700 @ 420mm, ISO 500, 1/2000, f/5.6

In this article, I will teach you everything I know about focus modes on modern DSLR and mirrorless cameras. Since autofocus functionality depends on what camera type and model you are using, I obviously cannot go over all the available AF modes, so I will only go through a few camera systems. Since I am a Nikon user, I will put a little more emphasis on Nikon cameras.

1. How Camera Autofocus Works

The nice thing about digital cameras today is that they come with all kinds of sophisticated autofocus features. If back in the day one had to master both manual focus and autofocus features of their cameras to get images that were in focus, today, one can simply switch to the correct autofocus mode and let the camera do all the hard work. Autofocus systems have gotten better and better over the last decade – even the cheapest cameras are now equipped with rather complex algorithms that are capable of automatically scanning the scene and identifying the subject. Some modern cameras can even perform face and eye detection in a scene, utilizing artificial intelligence and machine learning to accurately predict and calculate subject movement. To make all this happen, cameras need to utilize specific features and functions that are integrated into different components of the camera. Some of these are based on hardware, while others are based on complex software and algorithms. Let’s go over some of the basics, and see how modern autofocus systems work.

1.1. The Importance of Contrast

For autofocus systems to function properly, they need an area of high contrast. If you use your camera to focus on a white wall with no texture, or a blue sky without any clouds, your autofocus system will try to focus a few times and eventually give up. That’s because a blank white wall or a plain blue sky have no contrast or transitions that the camera can use to evaluate focus accuracy:

No Contrast
Autofocus will fail when focusing on an area with no contrast

However, if you find an area of sudden transition on your wall (say where it goes from one distinct color to another), and you place your focus right in the middle of it (area of the highest contrast), your autofocus system will be able to snap into focus more easily:

Good Contrast
Focusing on an area with high contrast allows the autofocus system to snap into focus

The more contrast, the better – if you can provide more areas of contrast that incorporate both vertical and horizontal lines, your autofocus system will have no problem acquiring focus each time, very accurately:

Best Contrast
Between the three, this one has the best contrast in the middle

The slight slanting of the edges in the above illustration allows any type of focus points (horizontal, vertical, or cross-type, explained further down in the article) to identify areas of high contrast. Try to focus right in the middle of the above chart – your camera should be able to focus without any issues.

Hence, autofocus systems heavily rely on the presence of areas of high contrast for focusing. Now you know that when a lens starts to “hunt” for focus and fails, it happens because there isn’t enough edge detail (contrast) in the focused area for the autofocus system to work properly. This is why it is always so much easier to focus on subjects with very distinct features!

1.2. Active vs Passive Autofocus

There are two types of AF (Autofocus) systems – Active and Passive. The “Active AF” system works by shooting a red beam on your subject, then bouncing that light back to your camera to figure out the distance between the camera and the subject. Once the camera knows what that distance is, it instructs the lens to adjust focus based on this information. The nice thing about Active AF is that it can be used in poorly-lit environments, where normal (passive) AF does not function. The bad thing about Active AF is that you can only use it for stationary, non-moving subjects and it only works for close subjects. If you use a Nikon or a Canon speedlight that has an “AF Assist” function, it will use the Active AF system.

On the other hand, the “Passive AF” system works very differently. Instead of relying on the red beam to find out the distance between the camera and the subject, it either uses “Phase Detection” or “Contrast Detection” (or a combination of both) for detecting contrast.


If your camera has an “AF Assist” lamp that occasionally turns on in low-light situations, it is not an “Active AF” beam – all it does is fire direct light at your subject like a flashlight would, so it still relies on your camera’s “Passive AF” system.

Many compact digital cameras and smartphones often only rely on Contrast Detection AF to acquire focus, while most modern DSLR and mirrorless cameras can use both Phase and Contrast-Detection to acquire focus. Let’s talk about these next.

1.3. Phase Detection AF vs Contrast-Detection AF vs Hybrid AF

Most modern DSLRs and mirrorless cameras come with several types of autofocus systems that rely on different software and hardware. The first type is Phase Detection AF, which uses an array of microlenses for focusing. As light passes through these microlenses, it splits up into a pair of images. The distance between these images is then measured to see how far front or back-focused the subject is. The camera can then use this information to send exact instructions to the lens on which way to turn its focus and by how much. As a result, Phase Detection AF is very fast, which makes it ideal for tracking fast-moving subjects. I explain all this in my How Phase Detection Autofocus Works article in much more detail.

Harris's Hawk
Harris’s Hawk, captured with Phase Detection AF
NIKON D300 @ 300mm, ISO 200, 1/3200, f/4

The second type of autofocus system is Contrast Detection AF. Unlike Phase Detection AF that uses hardware, Contrast Detection AF relies on software algorithms that “probe” through areas of an image for edge detail. Basically, the part of the scene that needs to be in focus is scanned by the camera – it uses the lens to rapidly change focus from foreground to background until the subject is perfectly sharp / in focus. Because of this focus probing methodology, Contrast Detection AF is generally known to be slow on most cameras.

At the same time, Contrast Detection AF can be much more reliable and accurate compared to Phase Detection AF when shooting in low-light conditions, which is why some cameras incorporate both. Such cameras can easily switch between Phase and Contrast Detection AF to be able to take advantage of both in different environments – this is known as Hybrid AF. Some cameras even have advanced intelligence built into their Hybrid AF implementations, and they are able to combine both Phase Detection and Contrast Detection AF data to get extremely fast and accurate results.

1.4. DSLR vs Mirrorless Autofocus Systems

On DSLR cameras, light passes through the lens into the camera body, then reflects from the reflex mirror into the optical viewfinder (OVF). Part of that light passes through the semi-translucent part of the mirror into a secondary mirror, which then reflects the light into a separate AF sensor located down in the camera chamber. This AF sensor is a separate physical unit that is used exclusively for Phase Detection AF, as illustrated below:

DSLR Camera Focusing
DSLR Camera

The AF sensor contains an array of different patterns in different directions that are used for scanning the focused area for contrast. They can be vertical, horizontal, and sometimes even diagonal in their direction. Here is a close-up of the AF module from an advanced Canon DSLR, which shows a complex layout of different sensors:

Canon Phase Detection AF

Since Contrast Detection AF requires light to actually hit the imaging sensor directly for the autofocus system to probe for contrast, DLSR cameras have to be in “Live View” mode for it to work. This means that while DSLRs can use both Phase and Contrast Detection AF, the former requires the use of the optical viewfinder, while the latter requires the use of the rear camera LCD.

In contrast, light always reaches the imaging sensor on mirrorless cameras. There is no secondary AF sensor, which means that focusing can only be performed on the imaging sensor itself. Nothing is reflected inside the camera chamber since the picture from the imaging sensor is simply duplicated to an electronic viewfinder (EVF), as shown below:

Mirrorless Camera Focusing
Mirrorless Camera

Since Phase Detection AF is much faster than Contrast-Detection AF, camera manufacturers figured out ways to integrate separate Phase Detection AF sensors directly on imaging sensors. This way, most mirrorless cameras today are able to perform both types of focusing.

Don’t worry about all this if it sounds too confusing – the technical information above is just provided to help you understand how autofocus functions. Just remember that the default autofocus behavior on your camera relies on the light that passes through the lens and the type of focus mode you pick, as explained further down below.

1.5. Focus Points

Focus points are the little empty squares or dots that you see when you look through your viewfinder (shown as a red square in the earlier illustrations). Manufacturers often differentiate entry-level cameras from professional ones by implementing different types of autofocus systems. Entry-level cameras generally have simple AF systems with a few focus points for basic focusing needs, while pro-level cameras have complex, highly configurable AF systems with lots of focus points. These focus points are intentionally laid out in certain parts of the frame and the number of focus points, along with the layout vary not only by the manufacturer but also by camera models. Take a look at these two types of autofocus systems with a different number of focus points and different layouts (Left: Nikon D3500, Right: Nikon D810):

Nikon D3500 vs D810 AF Points

As you can see, the Nikon D3500 has a total of 11 AF points and the Nikon D810 is equipped with a total of 51 AF points – a big difference in total number. Is the number of AF points important? Of course it is – not only do you have more AF points to use while composing your shot and focusing on a particular area of an image, but also the camera AF system can use those different AF points for subject tracking (extremely useful for sports and wildlife photography). However, it is not just the sheer number of focus points that make a difference – there are also different types of focus points.

1.6. Types of AF Points

Let’s talk about different types of AF points now. As I have pointed out above, the number of focus points is not the only important factor in autofocus systems – the type of AF points is also very crucial for getting accurate results. Generally, there are three types of AF point sensors available: vertical, horizontal and cross-type. These only apply to Phase Detection AF, because they rely on hardware sensors.

Both vertical and horizontal sensors are one-dimensional, and they only detect contrast in one direction. Cross-type sensors are two-dimensional and they can detect contrast both on vertical and horizontal lines, which makes cross-type sensors much more accurate in comparison. What this means, is that the more cross-type sensors your camera has, the better and the more accurate Phase Detection AF is going to be.

That’s why when new cameras are announced, you will typically see something that says “x number of focus points and x number of cross-type sensors” – manufacturers proudly state the number of focus points and the number of cross-type sensors, especially when those numbers are high. For example, this is what Nikon lists under “Key Features” on the Nikon D7100: “Building on the acclaimed autofocus system from the D300s, the D7100 uses 51 focus points, including 15 cross-type sensors for detecting both vertical and horizontal contrast variations, to achieve fast, precise focus”. This means that the total number of focus points is 51, 15 of which are more accurate, cross-type sensors.

Pika with Grass Front
Mountain Pika
NIKON D3S @ 500mm, ISO 1600, 1/800, f/8.0

Whenever you shop for a new DSLR camera, pay close attention to the total number of Phase Detection AF points, along with the number of cross-type sensors, because those two are important, especially if you want to shoot sports and fast-moving wildlife. On mirrorless cameras, Phase Detection AF pixels on the imaging sensor are designed differently (mostly one-dimensional), so you don’t need to worry about the types of AF points. However, the total number of focus points and their spread in the viewfinder can still matter for things like subject tracking.

1.7. Other Factors that Impact AF Performance

As you can see, both the total number of focus points and their types can be very important. However, those are not the only two things that are needed to get accurate results. The quality of light is another important factor that can seriously affect autofocus performance. By now, you probably already know that your camera autofocus works great when you shoot in daylight conditions, and it starts to suffer when you move indoors to challenging light. Why is this the case? Because in low-light conditions, it is much tougher for your camera to detect contrast. Remember, Passive Autofocus completely relies on the light that passes through the lens. If the quality of that light is poor, so is its autofocus performance.

There are a few other factors that can affect autofocus performance, such as your camera’s focus detection range, lens maximum aperture and the speed of focus motors. The focus detection range is an important factor because it affects how sensitive your camera’s autofocus system is to low light. This can be especially important when using teleconverters with lenses, which can reduce the maximum aperture by up to 2 stops (with a 2x teleconverter) – a big difference. When using slower lenses, older cameras might fail to autofocus in less than ideal conditions. In comparison, newer cameras often feature a wider focus detection range, which allows them to focus reliably even in extremely dark conditions.

In terms of lens maximum aperture, there is a reason why pro-level f/2.8 lenses focus much faster than f/5.6 consumer zoom lenses: f/2.8 is a sweet spot for autofocus systems, as the lens aperture is neither too wide, nor too narrow. Fast f/1.4 prime lenses are usually slower than f/2.8 lenses because they require more rotations of lens elements to achieve precise focus. Precision is key at such wide apertures, as depth of field is extremely shallow. Ideally, the lens aperture should be between f/2.0 and f/2.8 for the best autofocus performance. Smaller maximum apertures like f/5.6 mean less light passing through the lens, making autofocus operation more difficult. Therefore, lenses with large maximum aperture are generally better for the autofocus system.

Rough-legged Hawk
Rough-legged Hawk
NIKON D700 @ 550mm, ISO 800, 1/1250, f/5.6

The speed of the focus motors is another important factor. Older lenses generally have slow screw-drive AF motors, while newer lenses feature much faster silent-wave or linear motors. Some high-end lenses even feature multiple linear motors, which is often needed when moving large and heavy lens groups.

Lastly, the overall quality and reliability of the AF system in a camera should not be ignored. Keep in mind that both DSLR and mirrorless camera manufacturers continuously work on tweaking their AF systems and algorithms. As a result, it is becoming more common to release fixes and improvements to autofocus systems via firmware updates. Always make sure that you are running the latest and greatest firmware version, so that you can take advantage of all the latest tweaks to the autofocus system.

1.8. AF Point Coverage

Another important factor is the AF point coverage. This has to do with how far focus points can reach to the edges of the frame before they can no longer be utilized for focus selection and tracking. While it might not directly affect autofocus performance, AF point coverage can be an extremely important factor when tracking fast-moving subjects. This is where mirrorless cameras offer big advantages over their DSLR counterparts, because Phase-Detection AF sensors can be integrated into areas that are impossible to reach for a DSLR. Take a look at the below image that shows the AF point coverage on the Sony A7 III:

Sony a7 III Autofocus Point Coverage

As you can see, it stretches practically to the edges of the frame, which allows the camera to continue tracking subjects no matter where they end up, as long as they are still somewhere in the frame.

DSLR cameras are limited by the size of the secondary mirror and the AF sensor, optical distortion, vignetting, and other issues, which results in only the center part of the frame being adequately covered.

2. Autofocus Modes

Nowadays, most digital cameras are equipped with several different focus modes for various situations. It is one thing to photograph a still subject’s portrait, and another to photograph a running person or a bird in flight. When photographing still subjects, you generally acquire focus once and take a picture. If the subject moves, you re-acquire focus again and take another picture. But if you have a subject that is continuously moving, you need your camera to readjust focus automatically as you take pictures. The good news is that your camera has built-in functionality to handle such situations. Let’s go over these focus modes in more detail.

2.1. Single AF (AF-S) Mode

The “Single AF” mode (AF-S), also known as “Single Area AF” on Nikon and “One-Shot AF” on Canon cameras, is a pretty straightforward way to acquire focus. You pick one focus point and your camera will look for contrast just in that single focus point. When you half-press the shutter or press a dedicated focusing button (if you have one), the camera will snap into focus once, and if your subject moves, it won’t reacquire focus even if you continue half-pressing the button. Hence, the focus remains “locked”.

The AF-S mode often requires the camera to lock into focus before allowing you to take a picture, so if the focus is not acquired properly, pressing the shutter will do nothing due to focus error. Some cameras allow you to change this behavior though. On Nikon DSLR and mirrorless cameras, for example, you can set “AF-S Priority Selection” under the “Autofocus” custom settings menu to “Release”, which lets you take pictures even when your subject is not in focus. A couple of things to note about the AF-S mode – if you mount an external speedlight that has an “AF-Assist” red beam, you will need to be in AF-S mode for it to work. The same is true for the “AF-Assist” lamp in front of your camera, it will only function in AF-S mode.

Iguana Look
Iguana, Captured in AF-S Mode
NIKON D700 @ 420mm, ISO 400, 1/1000, f/5.6

2.2. Continuous AF (AF-C) Mode

Another focus mode that is available on all modern DSLR and mirrorless cameras is called “Continuous AF” (AF-C), which is also known as “AI Servo” in the Canon world. This mode is used for tracking moving subjects, such as when photographing sports, wildlife, and fast-moving action. The AF-C mode is much more complex when compared to AF-S because the autofocus speed and tracking algorithms can heavily depend on the type of subject, how fast and how unpredictable it moves. Some AF-C implementations use all kinds of calculations that take advantage of artificial intelligence and machine learning for analyzing and predicting subject movement. This is one area camera manufacturers always put a lot of emphasis on, so you will see the most number of related focus options in the camera menu.

The nice thing about the AF-C mode, is that it will automatically re-adjust focus if you or your subject move. All you need to do is continue half-pressing the shutter button or holding the dedicated AF button (if you have one) on your camera, and the autofocus system will automatically track movement and adjust focus. Most modern autofocus systems allow using more than one focus point for dynamic subject tracking in AF-C mode, which I cover further down below in this article.

Roseate Spoonbills at Sunrise
Roseate Spoonbills, Captured in AF-C Mode
NIKON D3S @ 300mm, ISO 3200, 1/250, f/8.0

2.3. AF Auto (AF-A) / Hybrid Mode

Some cameras also have a mode called “AF Auto” (AF-A) or something like “AI Focus AF” (Canon), which is basically a hybrid mode that automatically switches between AF-S and AF-C modes. If the camera thinks that the subject is stationary, it switches to AF-S, and if the subject moves, it will automatically switch to AF-C mode. By default, most entry-level cameras are set to AF-A, which works quite well in most situations. Many of the higher-end / professional cameras do not have this mode, since it is designed for beginners in mind.

2.4. Full-Time Servo (AF-F) Focus Mode

The Full-time Servo AF mode, also known as “AF-F”, was introduced by Nikon specifically for recording videos on its DSLR and mirrorless cameras. This mode automatically tracks subject movement and acquires focus during video recording. Don’t worry about this mode if you do not shoot video.

Personally, I typically leave all of my Nikon cameras in AF-C mode and only switch to AF-S when the camera cannot focus in low-light situations.

2.5. Changing Focus Modes

If you do not know how to change the focus mode on your camera, I recommend checking out your camera manual, because different cameras handle this differently. For example, all entry-level Nikon DSLRs require going into the camera “Info” screen to change the focus mode, while higher-end DSLR and mirrorless cameras have a dedicated switch or a button to toggle between different focus modes. For example, here is how you change the focus mode on the Nikon D850:

Nikon D850 Change Focus Mode

First, you press and hold the AF-mode button on the front of the camera, then you rotate the rear dial (Main command dial) to switch between AF-S, AF-C and M (manual focus) modes.

3. AF-Area Modes

To make things more confusing, many digital cameras also have something called “AF-Area Mode”, which allows photographers to choose several options to use while operating in AF-S, AF-C, AF-A, and AF-F modes. Many of the entry-level / semi-professional cameras allow you to pick a certain “AF-Area Mode” within the camera menu, while pro-level cameras typically have a dedicated button for it. So, what do these AF-Area Modes do? Let’s go through them one by one.

3.1. Pinpoint AF Mode

The pinpoint AF mode is a Nikon-specific mode that is designed to utilize Contrast Detection AF in order to precisely focus on a very small portion of the scene. The autofocus point becomes a small spot, which you can slowly move to any part of the screen, including the extreme edges. Use this mode when you need to acquire precise focus when photographing stationary subjects (landscapes, architecture, product, macro, etc). It is only available in AF-S mode.

3.2. Single-Point AF-Area Mode

When you choose the “Single Point” (Nikon) or “Manual AF Point” (Canon) AF-Area Mode, the camera only uses one focus point that you choose in your viewfinder to acquire focus. So if you move your focus point up/down/left/right, the camera will detect contrast only on that particular focus point. I use Single Point AF-Area Mode when photographing landscapes, architecture, and other stationary subjects.

Single-Point AF-Area Mode

3.3. Dynamic AF-Area Mode

In “Dynamic” (Nikon) or “AF Point Expansion” (Canon) AF-Area Mode, you still choose one focus point and the camera will initially acquire focus on that particular focus point. However, once the focus is acquired, if your subject moves, the camera will utilize the surrounding focus points to track subject movement and keep the focus on your subject. You are expected to track the subject by panning the camera along with the subject and making sure that the subject stays close to the initially selected focus point. If the camera selects a surrounding/different AF point, it might not be directly visible inside the viewfinder at the time of capture.

Dynamic AF-Area Mode

The Dynamic AF-Area Mode works great for fast-moving subjects like birds because it is not easy to keep the focus on birds in flight. Higher-end DSLR and mirrorless cameras have the ability to control the number of surrounding focus points to activate for this type of shooting. For example, the Nikon D810 allows choosing between 9, 11, 21 and 51 points in Dynamic AF-Area Mode. So if you only wanted to track a small portion of the scene, you would pick 9 points and if you wanted to track the entire frame, you could pick all 51 points to track your subject.

Lastly, many of the modern DSLRs from Nikon have a “3D-Tracking Mode”, where you initially pick the AF point and the camera will automatically activate as many focus points as needed to track subject movement. The cool thing about the 3D-Tracking mode is that it uses a special scene-recognition system that actually reads colors and will track your subject automatically, letting you compose your shot while the subject moves. For example, if you are photographing a white bird among many black birds, the 3D-Tracking system will automatically focus on and track the white bird, even if the bird moves or if you move the camera, letting you compose your shot.

If you compare 3D-Tracking to Dynamic AF-Area with a certain number of focus points selected, the 3D-Tracking method will use all available focus points on the camera to track your subject, while the Dynamic AF-Area mode divides the focus points to “zones”, activating only the surrounding focus points (as many as you selected). For example, if you choose 9 focus points, subject tracking will only work within a zone of 9 total focus points that are surrounding the focus point you picked. If your subject moves away from all 9 focus points, the camera will not be able to focus on the subject anymore. In 3D-Tracking mode, the camera will continue tracking the subject (newly selected focus points will be displayed in the viewfinder), even if it significantly moves away from your initial focus point. I use the Dynamic AF-Area mode a lot when photographing wildlife and typically shoot with a smaller number of focus points activated (between 9 and 21 focus points). But if the action is very chaotic and I have a bunch of random birds flying towards me, choosing the 3D-Tracking mode does a fairly good job at finding a subject to focus on and track it continuously.

3.4. Auto-Area AF Mode

The “Auto-Area AF” (Nikon) or “Automatic AF Point Selection” (Canon) Mode is the “point-and-shoot” method of acquiring focus. Depending on what you are photographing, it will automatically pick what to focus on. It is a pretty complex mode because it will actually recognize the skin tones of a person in the frame and will automatically focus on them. If there are multiple people in the frame, it will focus on those that are closest to the camera. If the camera does not detect any skin tones, it will typically focus on the closest and largest object in the frame. If you shoot in AF-S mode and select “Auto-Area AF”, the camera will actually display what focus points it will use for a second, allowing you to see and confirm the area the camera will focus on. The same thing can be done on Canon DSLRs, but it is called “Automatic AF point selection in One-Shot AF mode”. I never use this mode, because I want to control where to focus, instead of letting the camera do it for me.

Auto-Area AF Mode

3.5. Group-Area AF Mode

Another Nikon-specific mode is called “Group-Area Autofocus”. When compared to the regular Single-Point AF mode, Group-Area AF activates five focus points to track subjects. This focus mode is great for initial focus acquisition and tracking of subjects when compared to a Single-Point or Dynamic AF, especially when dealing with smaller birds that fly erratically and can be really hard to focus on and track. In such situations, the Group-Area AF mode might give better results than Dynamic AF, showing better shot-to-shot accuracy and consistency.

Nikon Group-Area AF

How does Group-Area AF work? Basically, within the viewfinder, you see four focus points, with the fifth one in the middle hidden. You can move all four focus points by pressing the multi-touch controller on the back of the camera (ideally, you want to stay in the middle, because the focus points in the center of the frame are cross-type and the most accurate). When pointed at a subject, all five focus points are activated simultaneously for the initial focus acquisition, with priority given to the closest subject. This differs from the Dynamic 9 (D9) AF mode quite a bit, because D9 activates 8 focus points around the center focus point, with priority given to the chosen center focus point. If the camera fails to focus using the center focus point (not enough contrast), it attempts to do it with the other 8 focus points. Basically, the camera will always prioritize the central focus point and only fail-over to the other 8 if autofocus is not possible. In contrast, Group-Area AF uses all 5 focus points simultaneously and will attempt to focus on the nearest subject, without giving preference to any of the 5 focus points.

Group-Area AF is especially useful when photographing birds, wildlife, and non-team sports. In the above sample image of speed skaters, if your goal is to focus on the front runner, Group-Area AF would do wonders, as it would automatically acquire focus on and track the runner that is closest to the camera.

Nikon Dynamic-Area AF

Another good example can be a perched bird sitting on a stick and you are looking at it a little from above, so the ground behind the bird is clearly visible. With Dynamic AF mode, whatever you are pointing at is where the camera will initially attempt to acquire focus. If you are right on the bird, the camera will focus on the bird. If you accidentally point to the ground behind the bird, the camera will focus on the background instead. This can get quite challenging when photographing small birds, especially when the branch or stick they are sitting on is constantly moving. Getting the initial focus point is important, and the quicker you do it, the better the chance of capturing and tracking action, especially if the bird decides to suddenly take off.

As I have mentioned above, with Group-Area AF, there is no preference given to any focus point, so all 5 focus points are active simultaneously. In this particular situation, since the bird is closer than the background, as long as one of the 5 focus points is near the bird, the camera will always focus on the bird and not the background. Once focus is acquired, Group-Area AF will also track the subject, but again, only if one of the 5 focus points is near the subject. If the subject moves fast and you cannot effectively pan your camera in the same direction, focus will be lost, similarly to what happens in Dynamic 9 AF mode. In terms of tracking, I personally find Group-Area AF to be pretty fast, but it is hard to say if it is as fast as Dynamic 9 AF – in some situations, Dynamic 9 AF seems to be a bit faster.

Another important fact I should mention, is that when you use Group-Area AF in AF-S mode, the camera will engage face recognition and attempt to focus on the eye of the nearest person, which is neat. For example, if you are photographing someone between tree branches and leaves, the camera will always attempt to focus on the person’s face instead of the nearest leaf. Unfortunately, face recognition is activated only in AF-S mode on Nikon DSLRs, so if you photograph fast-moving group sports and you need the camera to lock and track on a subject’s face (and not on the nearest object), your best bet will be to use Dynamic AF instead.

Here is an illustrated comparison of each Nikon AF mode (image courtesy of Nikon USA):

Nikon Autofocus Area Modes

Clockwise from the top left: Single-Point AF mode, Dynamic-Area AF mode (9 points), Dynamic-Area AF mode (21 points), Dynamic-Area AF mode (51 points), 3D-Tracking mode, Auto-Area AF mode, and Group-Area AF mode.

3.6. Other Area Modes

Some of the newer Nikon cameras have additional AF-Area Modes like “Face-Priority AF”, “Wide-Area AF”, “Normal-Area AF” and “Subject-Tracking AF” for use in video recording. I’m not going to discuss each one of these in detail, because they are specific to certain camera models and will probably change in the future. Canon also has some AF-Area Modes like “Spot AF”, where you could fine-tune your focus inside a focus point.

3.7. When to Use Different AF-Area Modes

Why do you need to know how and when to use different AF-Area Modes? Because each one of them can be combined with Focus Modes! To make things easier to understand, I compiled a chart with examples for you (for Nikon cameras):

AF-Area ModeNikon Focus Modes
AF-S ModeAF-C ModeAF-A Mode
Note: Not all of the above focus modes may be available on your Nikon camera. The new AF-F and other AF-Area video modes are not included in the above chart.
Nikon Pinpoint AF
Pinpoint AF-Area Mode (Live View Only)
Camera acquires focus only once and on the selected single focus point only.Disabled, only works in AF-S.Disabled, only works in AF-S.
Single-point AF
Single-Point AF-Area Mode
Camera acquires focus only once and on the selected single focus point only.Camera focuses on the selected single focus point only and will reacquire focus if the subject moves.Camera detects if subject is stationary or moving and will automatically select whether to use AF-S or AF-C. Only one focus point is used in either case.
Dynamic-area AF
Dynamic AF-Area Mode
Disabled, works just like Single-Point AF.You choose an initial focus point and once the camera acquires focus on the subject, it will engage the surrounding focus points to track subject movement. The number of surrounding focus points to use can be selected in camera menu.Camera detects if subject is stationary or moving and will automatically select whether to use AF-S or AF-C.
3D-tracking AF
Dynamic AF-Area with 3D-Tracking
Disabled, works just like Single-Point AF.Instead of using a particular number of surrounding focus points, the 3D-Tracking activates all available focus points and uses color recognition to track subjects. You pick the initial focus point and the camera will track the subject across the frame automatically, letting you recompose the shot without losing focus on the subject.Camera detects if subject is stationary or moving and will automatically select whether to use AF-S or AF-C.
Dynamic-area AF
Group-Area AF Mode
Camera activates five focus points and focuses on the nearest subject. If faces are detected, the camera will give priority to portrait subjects.Camera automatically focuses on the nearest subject and will track the subject in the frame, as long as the subject remains close to the five selected points. Face detection is disabled.Not available.
Auto-area AF
Auto-Area AF Mode
Camera automatically picks a focus point, depending on what’s in the frame.Camera automatically picks a focus point on a moving subject and will track the subject in the frame.Camera detects if subject is stationary or moving and will automatically select whether to use AF-S or AF-C.

3.8. Changing AF-Area Modes

To find out how to change the AF-Area Mode on your camera, once again, I recommend checking out your camera manual. If you have an entry-level camera, you will most likely have to go through the camera menu to change your AF-Area mode. If you have a higher-end DSLR or mirrorless camera, you might be able to quickly toggle through different AF-Area modes by pressing a combination of different buttons. For example, on the Nikon D850 DSLR, you have to press the same AF-mode button on the front of the camera, then rotate the front dial (Sub-command dial) to change the AF-Area mode, as shown below:

Nikon D850 Change AF-Area Mode

4. Autofocus Scenarios and Examples

So far you have read a lot of technical information on each focus mode and AF-Area modes. Let’s now go through different scenarios and examples for you to fully understand and grasp the information above. The camera settings I show below only apply to Nikon DSLR cameras, but the concepts remain the same for any other camera system out there.

4.1. Scenario #1 – Photographing Outdoor Sports

Which autofocus mode and AF-Srea mode would you choose when photographing outdoor sports like football? Let’s start with choosing the right Autofocus Mode. Obviously, using the Single AF / AF-S mode is not going to work, since you need the camera to re-adjust focus continuously as you half-press the shutter / AF buttons on your camera. Therefore, we must use either AF-C or AF-A modes. In such situations, we know that the subjects move continuously all the time, so I would just pick the AF-C mode. What about AF-Area mode? Should you use the Single-Point AF-Area Mode, Dynamic AF-Area Mode, Group-Area AF Mode or the 3D-Tracking Mode? I would personally choose the 3D-Tracking mode and let my camera deal with tracking the subjects while I compose my shots. If you find that 3D-Tracking is not working out well and it fails to track your subjects correctly (or you have one particular subject to track), then switch to Dynamic AF-Area mode with a relatively high number of focus points, especially if you are close to the action. Group-Area AF would work great if you only want to track the subject that is closest to the camera. Here is a summary of the settings I would use:

  1. Autofocus Mode: AF-C
  2. AF-Area Mode: 3D-Tracking, Dynamic AF-Area or Group-Area AF
  3. Custom Settings->Dynamic AF Area: 21-points or 51-points
  4. Custom Settings->AF-C Priority Selection: Release+Focus

4.2. Scenario #2 – Photographing People Outdoors

When taking portraits of people that pose for you outdoors in daylight, any of the autofocus modes should work perfectly fine. If you shoot in AF-S mode, the camera will only focus once when you half-press the shutter, so just make sure that you or your subjects don’t move once you acquire focus right before taking a picture. By default, your camera should not let you fire, if the focus is not properly acquired in AF-S mode. If you are shooting in AF-C mode, just make sure to acquire good focus before taking a picture. AF-A mode works great for portraits as well. When it comes to AF-Area modes, I would stick with the Single-Point AF-Area Mode, since your subjects are stationary.

  1. Autofocus Mode: AF-S, AF-C or AF-A
  2. AF-Area Mode: Single-Point AF-Area
  3. Custom Settings->AF-S Priority Selection: Focus
  4. Custom Settings->AF-C Priority Selection: Release+Focus

It goes without saying that you should always focus on the closest eye of your subject, especially when standing close.

Now, if you use a modern DSLR or a mirrorless camera that has Face or Eye-Detection Autofocus modes available, make sure to use them! On a Nikon Z mirrorless camera, the settings would be the following:

  1. Autofocus Mode: AF-C
  2. AF-Area Mode: Auto-Area AF
  3. Custom Settings->Auto-Area AF Face/Eye Detection: Face and Eye Detection On
  4. Custom Settings->AF-C Priority Selection: Release

4.3. Scenario #3 – Photographing People Indoors

Photographing people indoors can be quite challenging, especially in low-light. If the light levels indoors are poor, I would shoot in AF-S mode to make sure that my AF-Assist beam helps me when needed. If you are using a speedlight, AF-S will make your speedlight use the AF-Assist red beam to acquire focus. You cannot do that in AF-C mode. The AF-A mode should also work well for these types of situations, but I would still opt to use the AF-S mode instead. In terms of AF-Area modes, I would pick the Single-point AF-Area Mode and choose the center autofocus point for better accuracy when shooting in low-light situations.

  1. Autofocus Mode: AF-S
  2. AF-Area Mode: Single-Point AF-Area
  3. Custom Settings->AF-S Priority Selection: Focus
  4. Custom Settings->Low-light AF: On

4.4. Scenario #4 – Photographing Birds in Flight

Birds are extremely tough to photograph since it is hard to predict their behavior and they are often very fast. As I have pointed out above, I would shoot in Continuous AF / AF-C mode and pick either Group-Area AF Mode or Dynamic AF-Area Mode with focus points between 9 and 21 (I prefer to leave focus points at 21, but 9 is generally faster). I have tried using 51 focus points and also tried shooting in 3D-Tracking mode, but found those to be slower and less reliable than using fewer focus points. I use the center focus point 99% of the time when photographing birds and only change focus points when birds are perched on something. Again, the center focus point is normally going to give you the best results. If you are dealing with small birds and have a hard time with initial focus acquisition, give Group-Area AF a try (if available).

  1. Autofocus Mode: AF-C
  2. AF-Area Mode: Dynamic AF-Area or Group-Area AF
  3. Custom Settings->Dynamic AF Area: 9-points or 21-points
  4. Custom Settings->AF-C Priority Selection: Release+Focus

4.5. Scenario #5 – Photographing Landscapes and Architecture

For landscapes and architecture, all focus modes work fine, but I prefer to switch to AF-S or pinpoint modes since there is nothing to track. In low-light situations, you will not be able to utilize the AF-Assist function on your camera anyway (because of distance issues). Use Live View when possible for accurate focusing (zoom in to 100% first) and use Contrast Detect AF to focus on a bright object in your scene. Otherwise, the only other option is to turn off autofocus and manually focus your lens. When taking pictures of landscapes and architecture, you have to be extremely careful about where to focus and need to understand such things as hyperfocal distance well. You can find more information about these in my detailed Landscape Photography Guide. In terms of AF-Area mode, you want to use either Pinpoint AF or Single-Point AF-Area Mode in order to focus precisely on a certain part of the frame.

  1. Autofocus Mode: AF-S
  2. AF-Area Mode: Pinpoint AF or Single-point AF-Area
  3. Custom Settings->AF-S Priority Selection: Focus

4.6. Scenario #6 – Photographing Large Animals / Wildlife

When photographing large animals, I would shoot in Continuous AF / AF-C mode and use Dynamic AF-Area or 3D-Tracking modes, both of which work great. Animals are normally not as fast as birds (although they can be even faster at times), so unless you are shooting fast action, I would just pick Dynamic AF-Area with the highest number of focus points or use 3D-Tracking.

  1. Autofocus Mode: AF-C
  2. AF-Area Mode: Dynamic AF-Area / 3D-Tracking
  3. Custom Settings->Dynamic AF Area: Highest number of AF points or 3D
  4. Custom Settings->AF-C Priority Selection: Release+Focus

4.7. Scenario #7 – Photographing Small Groups

I frequently get asked about how to focus when photographing a small group of people. Before I talk about focus modes, let me point out a few important things here. If you are using a telephoto lens, you have to be careful about the camera-to-subject distance when using large apertures. If you stand too close to the group and use large apertures like f/1.4-f/2.8, only one or two people might be in focus while everyone else is blurred, unless everyone is positioned on the same focus plane. The solution is to either change your aperture to something smaller like f/5.6 or f/8 or to stand back / move away from the group, so that your depth of field is increased, or do both. If you want to blur the background and shoot at large apertures, your only choice is to put everyone on the same focus plane, parallel to your camera. Imagine how the group would be standing if they were all touching a flat wall with their heads – that’s how they need to stand. In terms of autofocus modes, if you are shooting in broad daylight, any of the AF modes work fine and I would pick Single-Point AF-Area Mode for focusing.

  1. Autofocus Mode: AF-S, AF-C or AF-A
  2. AF-Area Mode: Single-Point AF-Area
  3. Custom Settings->AF-S Priority Selection: Focus
  4. Custom Settings->AF-C Priority Selection: Release+Focus

Note: As you may have noticed, I always leave my “AF-S Priority Selection” and “AF-C Priority Selection” to be “Focus” and “Release+Focus”, respectively. Here is why. By keeping “AF-S Priority Selection” at “Focus”, I force my camera to not let me take a picture when I do not have good focus. I do not use the AF-S mode very often, but when I do, I want to make sure that my focus stays good. As for the “AF-C Priority Selection”, the “Release+Focus” mode works great for most situations – the camera will do its best to acquire good focus, but won’t hold up or delay the shutter too much, letting me shoot when I want. I don’t see the point of using either “Release” or “Focus” in AF-C mode. “Release” won’t care if your focus is good or not (what’s the point of autofocus then?) and “Focus” won’t let you take a picture until focus is locked. If I want my focus to be that accurate, I will switch to AF-S mode instead. Just leave these two settings as shown above and forget about them.

Hopefully, the above scenarios will be useful for you to understand when to use different autofocus and AF-Area modes. Now might be a good time to go back and review the chart above and see how well you can understand it.

Tips to Improve Autofocus Performance in Low Light

As I have pointed out earlier, focusing in bright, sunny environments is often quite easy and our cameras handle that pretty well. But people start having all kinds of problems when shooting in low-light conditions, especially indoors. Here are some tips for you if you have challenges shooting in low light:

  1. Use the Center Focus Point. Whether your camera is equipped with 9 or 51 focus points, you do not want to use the focus points in the corners of the frame when shooting in low-light conditions, simply because they are not going to be as sensitive and accurate. The center focus point is often your best bet because it is a cross-type sensor that works better than any other focus point in your camera. But what about framing and composition if you have to focus in the center? For those situations, the solution is to move the autofocus function from your shutter release to a dedicated button on the back of the camera, then focus on your subject and recompose. This technique is called “focus and recompose” using back-button focusing. Most digital cameras, including entry-level ones can do this. Professional-level cameras have a dedicated button for focusing called “AF-ON”, which is specifically designed for back-button focusing and you can easily activate it through the camera menu (“Custom Settings” -> “AF-Activation” -> “AF-ON Only” on Nikon). But you have to be careful when recomposing your shots after focusing, especially when dealing with shallow depth of field. If you focus and then recompose, your focus plane will change, potentially resulting in an out-of-focus subject, so keep this in mind.
  2. Use the “AF-Assist” Feature. It is there for a reason – use it every time you have problems focusing in low-light. To activate it, make sure that “AF-Assist” is turned on in your camera menu and the AF-S mode is selected. If you have a Nikon Z mirrorless camera, make sure that the “Low-light AF” option is turned on as well. And don’t forget about using a speedlight in extremely low-light environments.
  3. Look for Contrast and Edges. Instead of trying to focus on plain, one-colored subjects, look for “contrasty” subjects that stand out from the background.
  4. Add More Light. Sounds pretty basic, but if you are having problems focusing, what is simpler than adding a few more lights or turning more lights in the room? Lola and I were once photographing a corporate event and the ballroom was so dim, that we had a hard time getting good shots. We both switched to AF-S and were using our flashes for focusing, but high ceilings and lack of ambient light were making our images look very flat and dull. Lola then approached an event coordinator and simply asked her to turn up the lights and our problems all went away and we came back with beautiful pictures!
  5. Watch Your Shutter Speed. It might look like bad focus, but it might actually be camera shake that causes your images to look soft. Using a camera with in-body image stabilization or a lens with optical image stabilization technology certainly helps, but still, make sure to keep your shutter speed relatively high. Check out my article on the reciprocal rule. If you have to work with slow shutter speeds, work on your hand-holding technique.
  6. Use Live View Contrast Detection AF. Try focusing in Live View mode using Contrast Detection AF. It is much slower than Phase Detection AF, but certainly more reliable in low-light situations. Whenever I use a tripod, I always try to use Contrast Detection AF, because it gives me better and more accurate results. Even manually focusing is much easier in Live View mode, since you see a lot more on the larger LCD than inside the optical viewfinder. Not something you have to worry about on most mirrorless cameras though, since they automatically switch to Contrast Detection AF in low-light situations.
  7. Use a Bright Flashlight. If your camera does not have a built-in AF-Assist lamp, use a bright flashlight and ask someone to point it at your subject while you try to focus. Switch to manual focus mode once focus is acquired, then ask your helper to turn off the flashlight and take a picture without you or your subject moving.
  8. Use Manual Focus. Kind of goes against the title of this section, but you should still learn how to manually focus your lenses and not be afraid to do it from time to time. Sometimes manually focusing your lens is quicker than trying to use any of the autofocus methods or tricks.

Autofocus – Photography Basics

If you would rather watch a video on the basics of autofocus and how it works, please watch the video below from our free Photography Basics course on YouTube:

Please don’t forget to subscribe to our YouTube channel!

Source link

Posted on Leave a comment

Tech Startup Boom Raises $7M, Wants To Be Amazon for Photography

Tech Startup Boom Raises $7M, Wants To Be Amazon for Photography

Tech Startup Boom Raises $7M, Wants To Be Amazon for Photography 1

Boom, a Milan-headquartered tech startup, has raised $7 million in Series A funding based on its proprietary technology that is said to provide a way for companies to purchase “high-quality” images affordably, on a global scale.

Boom states that their goal isn’t to change photography (or filmmaking for that matter, as the system also supports booking of drone pilots, videographers, designers, and other creative disciplines), but change the way visual content is created using “intelligent technology.” Boom says it has created its own proprietary Artificial Intelligence and Machine Learning technology that allows Boom to supposedly trim down a photographer’s work to the “bare essentials” and handles everything else, from logistics to post-production.

The promise to its corporate clients involves its platform’s streamlined method of matching client photoshoot requests with the best photographers in the area combined with an automatic photo-editing system to allow faster access to images.

As far as how this benefits photographers, Boom hopes that the promise of more work opportunities with less stress is enough to entice high-quality talent.

Tech Startup Boom Raises $7M, Wants To Be Amazon for Photography 4
Image via

“We could see that countless internet giants were changing the way people shopped online, uploading billions of pictures on their websites and platforms every day, but these same brands had no access to a content provider that could keep up with their scaled-up, global, fast-paced environment. The whole system was expensive and obsolete,” Founder and CEO Federico Mattia Dolci said in a report on TechCrunch. “Our customers can place an order and expect a delivery 24h later, whether the photoshoots take place in Milan, New York, or Sydney, and whether the order calls for one photoshoot or a thousand! We guarantee speed, efficiency, and quality consistency every single time”.

Boom claims in excess of 250 major corporate clients including the likes of Deliveroo, Vacasa, Uber Eats, OYO, Lavanda, Casavo, Westwing, GetYourGuide, and more.

The $7 million in funding comes after a successful first-round seed of $600,000 the company obtained in June of 2018 and a second funding round in July of 2019 that totaled $3.4 million. In January of 2020, Boom consisted of 60 staff members that the company wished to expand to 120 by the end of the year. The company claims to represent over 35,000 photographers, operates in more than 80 countries, and has processed more than 3 million images to date.

Boom says that it will invest the latest round of funding into its “proprietary plug and play technology for managing the commercial photography production pipeline,” and will increase its presence to 180 countries including adding offices and studios in London and New York. The company is pitching itself as wanting to become “the Amazon for commercial photography.”

(Via TechCrunch)

Source link

Posted on Leave a comment

Just How Great Is the Fujifilm XF 50mm f/1.0 R WR Lens?

Just How Great Is the Fujifilm XF 50mm f/1.0 R WR Lens?

Fujifilm has long had the XF 56mm f/1.2 R lens, which offers fantastic portrait lens quality and lots of shallow depth of field for bokeh fanatics. Now, the XF 50mm f/1.0 R WR is here, blowing past the f/1.2 lens with an even wider aperture. This excellent video review takes a look at the lens in a variety of situations and the sort of performance and image quality you can expect from it. 

Coming to you from Andrew & Denae, this great video review takes a look at the new XF 50mm f/1.0 R WR lens. While the most notable feature is its crazily wide maximum aperture (which makes it the first ever f/1.0 mirrorless lens that also includes autofocus), the lens also comes with a lot of other features to improve its performance and image quality:

  • One aspherical element that reduces distortion and increases sharpness
  • Two extra-low dispersion elements that reduce chromatic aberrations and increase clarity
  • Super EBC coating that reduces flares and ghosting and increases contrast
  • DC autofocus motor for quicker autofocus in spite of large elements
  • Rounded nine-blade diaphragm to create smoother bokeh
  • Dust- and moisture-resistant design

Altogether, 50mm f/1.0 looks like a mightily impressive lens. Check out the video above for the full rundown. 

Source link

Posted on Leave a comment

Top Tips On Using Symmetry In Photography

Top Tips On Using Symmetry In Photography

Symmetry is a great technique you can use in your photos to make the ordinary more extraordinary as The School of Photography explains in this tutorial.



The School of Photography is back with a cracking composition-themed photography tutorial that focuses on how symmetry can really help you create balance and add interest to a photo. 

As The School of Photography explains in the above video, there are several types of symmetry that work well in images which include horizontal symmetry, vertical symmetry, radial symmetry and reflective symmetry. 

  • Horizontal Symmetry – This occurs when a line passes through the scene from left to right, dividing the scene into equal halves.
  • Vertical Symmetry – If the line passes through the scene from top to bottom, dividing the pattern into identical halves, then this creates a vertical line of symmetry.
  • Radial Symmetry – This is where the sides exhibit around a central point. For example, many flowers are radially symmetric with, roughly, identical floral structures.
  • Reflective Symmetry – A favourite with landscape photographers, Reflective Symmetry, as the word suggests, is all about reflections.

Now you know the different forms of symmetry, the next question is ‘where can you find it?’ and the answer is actually everywhere, you just have to look for it! In architecture, for example, a simple tile floor may have a repetitive pattern while modern buildings have lines and details which can easily be broken down into simple symmetrical shapes. In nature, tree lines work well as do close-up shots of flower heads and mountains reflected in lakes.


Reflections in the landscape


When you start looking for patterns and symmetry, they’re compositional tools that are, actually, really easy to find and when used right, you can create very visually powerful, as well as interesting, images that are balanced, harmonious and more importantly, lovely to look at. 

How have you used Symmetry in your photos? Let us know in the comments below or upload your photos to our Gallery


Support this site by making a Donation, purchasing Plus Membership, or shopping with one of our affiliates:
Amazon UK,
Amazon US,
Amazon CA,
ebay UK,

It doesn’t cost you anything extra when you use these links, but it does support the site, helping keep ePHOTOzine free to use, thank you.

Source link

Posted on Leave a comment

Transform your smartphone photography with extra lenses

Transform your smartphone photography with extra lenses

As smart as modern smartphones are (and they are smart) their cameras tend to offer us fewer focal length choices than we are used to with even the most basic compact zoom camera. This can make shooting portraits or distant subjects more difficult, as getting close to fill the frame leads to distortion and digital zooms reduce our pixel count. Sometimes, too, a smartphone camera’s lens just isn’t wide enough, and even though many have stitch panorama modes that can help with a wide vista or an enormous dramatic interior, it can be tricky to make them perform well.

A solution to all these problems has been on offer well before the dawn of the mobile phone camera, as we have used wideangle and telephoto converter accessory lenses on compact cameras and even box cameras since the earliest days of photography. Macro adapter lenses have been, and still are, a popular and simple answer for the occasional close-up and they have proved themselves very useful. Here we have brought together three quite different photographers who all use accessory lenses on their smartphones to allow them different effects and perspectives in their work. If you search for smartphone lenses on the internet you will discover there is quite a range of options available.

Some start at a few pounds while others cost several hundred pounds. As with most things in life the cheapest models are usually not the best and can sometimes simply be a waste of money. More budget gets you better build, better sharpness across the frame and reduced chromatic aberrations – as well as more satisfaction and better pictures. You will see more wideangle than telephoto converters available as they are easier to make well, so expect to pay decent money if you want the effect of a standard focal length or a short telephoto. You may also note that the better lenses need a mounting system so that they sit in the perfect position over your smartphone lens so that they are held flush and centred to the camera. These cost more money too, but ensure the best results.

Android users can feel somewhat neglected as most of the better lenses here are designed for Apple iPhones – purely because it is easier to create a system when all the phones you are making for follow a similar design. The Android system includes such a diverse range of body shapes and designs there are fewer manufacturers making lenses and mounting cases for individual phone models. The Beastgrip Pro cage is something of a solution for this problem.

Transform your smartphone photography with extra lenses 7
Rob Layton
Rob knows a thing or two about getting the best from a smartphone. He is a Senior Teaching Fellow in Journalism at the Bond University, Queensland, Australia. He lectures to students and trains journalists on the subject of telling stories using mobile phones to shoot stills and films, and how to edit them on the go. Rob uses a wide range of lenses and cages, all for the iPhone. He currently uses an iPhone 11 Pro. See IG @roblayton_iphoneography, Twitter @rob_layton. Online portfolio here.

Transform your smartphone photography with extra lenses 8

From a documentary Rob is working on, using an iPhone

As he lives on Australia’s famous Gold Coast it is only natural that Rob had been to the beach to shoot some surfers before heading to the office on the morning/night I spoke to him. He does everything on his iPhone and iPad, from shooting to editing and posting to his social accounts, and uses a collection of lenses and kits to get him the results he is looking for. Rob loves the 16:9 aspect ratio and achieves this using the 37mm threaded Moondog Labs Anamorphic lens with the BeastGrip Pro cage that holds the lens in exactly the right place. The lens has a 1.33x anamorphic effect, so the 4:3 iPhone image will need to be stretched out to 16:9 in software afterwards.

Transform your smartphone photography with extra lenses 9

Rob’s basic set-up; iPhone 11 Pro, Moment case, Moondogs filter mount

Rob uses camera apps to give him extra control of the camera features of his phone as well as to introduce looks and styles to his pictures. His sunrise and landscapes are often shot using FiLMiC Firstlight which offers a collection of looks as well as raw shooting and more advanced exposure control. ‘It’s as important to know the limitations of your smartphone’s camera as it is to know what it can do,’ Rob explains. ‘Once you understand what it can’t do you can find workarounds and get the best from the camera. But the limitations of smartphone cameras are reducing with every new generation of products. It’s like the space race with all the major companies competing with massive technological advances to become the best. The cameras on the iPhone 11 Pro are now so good that you almost don’t need accessory lenses, but extra focal length options can still be really useful.’

Tip: It’s really important to make sure your accessory lens is mounted correctly, flush to the camera lens, centred and not at an angle. I use a mounting cage and most good brands will have some form of mount case or holder to use that will help. And don’t buy cheap! See

Transform your smartphone photography with extra lenses 10
Yael Moussadji

Yael is an emergency physician who lives in Alberta, British Columbia, in Canada. She likes to photograph food, her family and travel, and always uses her phone for her photography. She currently uses an, iPhone 11 Pro with accessory lenses from Moment and filters from Hoya See

‘Having accessory lenses for my phone camera has really changed the game for me,’ says Yael ‘and has expanded the range of shots I can take.’ Yael uses the wide, telephoto and macro lenses from the Moment system for her food, family and travel photography, and uses Lightroom Mobile so she can process her pictures on her phone. ‘The extra focal length reach and width the lenses give me mean I can attempt scenes I wouldn’t have before, but also allow me to use the full resolution of the camera’s sensor as I don’t have to use the digital zoom feature of the phone. I’m hoping to go on safari in Africa next year, and am looking forward to mounting the tele lens on the longer lens of the iPhone 11. That should be amazing – if we get to go.’

Transform your smartphone photography with extra lenses 11

This foggy shot of Cox Bay Beach was taken with a Moment wide-angle lens, combined with Hoya filters

Yael also fits Hoya filters over her lenses to help get the looks she wants to achieve. ‘I often use the UV filters and a polariser, as I’ve found these increase the clarity of my pictures, and can boost colour saturation while cutting through the haze.’ ‘The iPhone 11 has a lot more photography functions and allows a lot of control over the way the picture looks, but I still prefer to use the Moment app as it also lets you specify which of the iPhone lenses I’m using and which Moment lens I have mounted, so the settings can be tailored exactly to the kit and focal lengths I’m using.’ It’s the telephoto lens that Yael reaches for most often as it gives her a long focal length without losing resolution. ‘

Transform your smartphone photography with extra lenses 12

Yael uses a collection of lenses with her iPhone 11 Pro

I like the compression of perspective it gives me and the way I can make distant mountains feel closer and make them fill the frame. With normal iPhone lenses they look small and a long way off.’ Tip Take your lenses with you everywhere you go and always have your phone in the Moment case – that way you are ready to take advantage of any situation. And get to know Lightroom and other editing apps. They can make a massive difference to your pictures. Also, watch tutorials. The Moment website has lots and they are really helpful.

Tip: Take your lenses with you everywhere you go and always have your phone in the Moment case – that way you are ready to take advantage of any situation. And get to know Lightroom and other editing apps. They can make a massive difference to your pictures. Also, watch tutorials. The Moment website has lots and they are really helpful.

Transform your smartphone photography with extra lenses 13
Jesper McIlroy

Jesper is an American commercial photographer who lives in Hong Kong. He shoots food, people and places for a wide range of Asian companies, including hotels, restaurants, fashion brands and magazines. Jesoer uses an: iPhone 11 Pro Max, with Shiftcam Pro series lenses, and his website

‘I use a Canon EOS 5D IV and Hasselblad H series kit for my commercial work, and used to feel I needed to use similar kit for my own personal photography. Now, though, phones are so good, especially with accessory lenses, that I use my iPhone with ShiftCam lenses for my behind-the-scenes pictures as well as pictures of my family, and any other “added value” pictures I do for work and video projects,’ he tells us. Jesper uses the Pro series lenses from ShiftCam with his iPhone 11 Pro Max, especially the Ultra Wide and 60mm Tele lenses, but he also likes the 70mm Macro lens for video and for shooting details of food to include some of the background and so show the environment.

Transform your smartphone photography with extra lenses 14

Shot with an ultra-wide Aspherical Pro lens in Night Mode

‘These lenses aren’t going to replace the kit I usually use for my commercial work, but they do allow me to shoot incredible photographs in places I wouldn’t want to, or be able to, take my usual kit – such as when I go hiking in the mountains, caving or on the beach. The quality I can get now from my phone and these lenses means I can feel okay about not taking my professional gear out all the time. That’s a very recent change for me – like in the past six months. Previously I wouldn’t have even thought to use my phone as I would have been too concerned with the picture quality. ‘This phone and these lenses have made me relearn the possibilities of photography. For so long I’ve been obsessed with having the most technically superior equipment with me the whole time, but now I don’t have to think about that so much any more.

Transform your smartphone photography with extra lenses 15

Tip: It is creative ideas that make great pictures, not so much the kit, so experiment and make the most of what your phone can do. Adding these lenses allows you to do that without losing quality through using the digital zoom on your phone, and fitting the telephoto lens means you can use your phone’s wider-aperture lens to keep a shallow depth of field. See Shiftcam’s website.

Source link

Posted on Leave a comment

Canon Will Definitely Release an APS-C Sensor EOS R Camera in 2021: Report

Canon Will Definitely Release an APS-C Sensor EOS R Camera in 2021: Report

Canon Will Definitely Release an APS-C Sensor EOS R Camera in 2021: Report 16

For many months, the Canon rumor mill has been split on whether or not a crop-sensor EOS R camera would ever be announced. Some said yes, others scoffed, but finally a reliable source has “confirmed” that this camera is indeed coming, and it will arrive next year.

The report comes from Canon Rumors, who has been trying to track down some sort of confirmation of this news for months. According to CR, an APS-C sensor RF mount camera is definitely coming, and it’s scheduled to be released in the 2nd half of 2021, though there will not be any RF-S lenses to go along with it.

It will reportedly be the smallest EOS R camera in the lineup, even smaller than the EOS RP, and will be targeted at sports shooters and videographers. That probably means lightning-quick continuous shooting speeds, high-speed video frame rates, and Dual Pixel AF II; and, in fact, CR’s source confirmed that last spec.

By the sounds of it, what we have here is a mirrorless 7D series camera that will compete with the likes of the Nikon D500 and the upcoming Pentax K-3 Mark III. It also provides a hint at how Canon plans to keep the EOS M and EOS R lineups separate: focusing its high-end APS-C aspirations on the RF mount and letting the EOS M series handle the rest. After all, there’s no need to design cheaper, slower RF-S lenses if this is going to be a baby R5.

That’s all we know for now, but with at least 8 months standing between us and this camera announcement, expect more details to emerge in the new year.

Source link

Posted on Leave a comment

3 Fantastic Beauty Lighting Setups for Stunning Portraits

3 Fantastic Beauty Lighting Setups for Stunning Portraits

A beauty dish is one of the most popular lighting modifiers for portraits and for good reason, as it can create dramatic, contrasty images that instantly capture the viewer’s eye. This fantastic video tutorial will show you three lighting setups using a beauty dish and other modifiers that capture a range of moods.

Coming to you from Lindsay Adler Photography, this great video tutorial will show you three different lighting setups using beauty dishes for stunning portraits:

  • A light, high-key setup using three strobes: a beauty dish and two softboxes. This uses a strip box together with the beauty dish in a clamshell setup, while the larger softbox serves as both the white background and the rim light.
  • A warmer setup that is very flattering for hair and skin tones. Using a background that is matched to the subject’s skin tone, you then add two strobes, one in a white beauty dish as the key light and a second with a grid to light the background. 
  • A more dramatic setup using three or four strobes and a dark background for more drama. In this, a silver beauty dish adds more contrast, while two strip boxes act as rim lights. Finally, a reflector or fourth light serves to lighten the shadows under the chin.

All three of these setups are fantastic to have in your arsenal and will give you a wide range of moods and looks. Check out the video above for the full rundown and a lot of examples from Adler. 

Source link